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Abstract

This paper introduces the Bogomolny equations, describing SU(n) monopoles of Yang-
Mills-Higgs theory in three dimensional Euclidean space. After restricting to the case of
SU(2), we describe the geometry of the monopole solution space via a scattering approach of
Hitchin [1]. We demonstrate how monopole solutions give rise to a spectral curve of eigenval-
ues on TCP1 and how this may more clearly be understood in terms of a rational map idea of
Donaldson [2]. We then introduce the Nahm equations of [3] as an application of the ADHM
idea to finding solutions to the self-duality conditions in the reduced case of R3, and illustrate
the equivalence of the Bogomolny and Nahm equations. Finally, we generalize these ideas by
introducing the Nahm transform: a nonabelian generalization of the Fourier transform that
relates the self-dual vector bundles on one space to vector bundles on another.

Introduction

The goal of this paper is to give the reader a gentle introduction to the notable discoveries in the
study of monopoles in R3.

In section 1, we give a review of the mathematics of gauge theory. We make use of of these
techniques in section 2 to give two derivations of the Bogomolny equations. The first approach
derives the equations directly from the anti-self-duality (ASD) conditions for instanton solutions in
R4 by treating the fourth component of the connection 1-form, A4, as a scalar field φ and ignoring
translations ∂4 along the x4 direction. The second approach works directly with the action to
derive not only the Bogomolny equations but also an integrality condition on the asymptotics of φ
that allow su(2) monopole solutions, much like instantons, to be characterized by a single number
k: the magnetic charge1.

In section 2, we study the (moduli) space of directed lines on R3 and make the identification
between this space and the (holomorphic) tangent bundle of the Riemann sphere TCP1. From here,
we motivate Hitchin’s use of a 1-dimensional scattering equation along a line (Dt − iφ)s = 0 to
characterize monopole solutions to the Bogomolny equations as giving rise to a holomorphic vector
bundle Ẽ over TCP1 corresponding to the solution space of the scattering equation for a given
line. An asymptotic analysis of the solutions to this equation naturally leads to both Hitchin’s
spectral curve Γ and Donaldson’s rational map theorem.

In section 3, we motivate the Nahm transform by analogy to the ADHM construction for
instantons. The story is a little bit more complicated here, since rather than a reduction to linear

1For general su(n) instantons, n− 1 numbers are required, associated to the Cartan subalgebra of g. We restrict
to the su(2) case, as most authors do, although the generalization of many of these statements to other real Lie
groups is not difficult.

1



Bogomolny Equations

Rational Functions Rk

Nahm’s Equations Spectral Curve Γ

Scattering Equation [Hitchin]ADHM-like construction [Nahm]

Sheaf Cohomology [Hitchin]

Figure 1: The triangle of ideas in the construction of monopoles.

data, we have a reduction to a Sobolev space of functions on the line segment (0, 2). The Nahm
equations are the related to the spectral curve Γ. We finally show how a solution of Nahm’s
equation gives rise to a monopole solution (A, φ) on R3.

The main ideas relating to understanding the Bogomolny equations can be simply diagrammed
in the triangle of Figure 1.

Historically, the Bogomolny equations were first introduced by Bogomolny [4] together with
Prasad and Sommerfield [5] in their studies of spherically-symmetric single-monopole solutions to
nonabelian gauge theories. Explicitly, the su(2) single-monopole solution takes the form

A =

(
1

sinh |x|
− 1

|x|

)
εijk

xj
|x|
σkdx

i

φ =

(
1

tanh |x|
− 1

|x|

)
xi
|x|
σi

where σi are the generators of su(2) and we are using Eisntein summation convention.
In [1], Hitchin considered the complex structure of geodesics (i.e. directed lines) in R3 and used

this together with the previous scattering ideas in the Atiyah-Ward Ak ansatz [6] to develop his
approch using the spectral curve (righthand arrow in Figure 1). In a separate approach, Nahm
[3] made use of the ADHM ansatz to formulate the solutions to the Bogomolny equations for
su(2) in terms of solutions to a coupled system of differential equations, now known as the Nahm
equations:

dTj
ds

(s) = εijk[Tj(s), Tk(s)]

where Ti for i ∈ {1, 2, 3} are k × k-matrix valued functions of s on the interval (0, 2), subject to
certain conditions. This is the lefthand arrow of Figure 1.

The equivalence of these two approaches, corresponding to the bottom arrow in Figure 1
was demonstrated by Hitchin in [7]. Hitchin considered the spectral curve of a monopole and
constructed a set of Nahm data associated to it, from which one could obtain Nahm’s equations.
This construction involved methods from sheaf cohomology for the construction of a necessary set
of bundles Ls over TCP1. This general circle of ideas for SU(n) monopoles was completed in [8].

Remarkably, these three various descriptions of monopoles can all be related using relatively
straightforward constructions to a fourth object: the space of rational functions of a complex
variable z with denominator of degree k. This is the rational map constructed by Donaldson [2].

In general, the role of the Nahm transform in understanding the moduli space instanton-like
solutions in R4/Λ for Λ a subgroup of translations in R4 is as follows:

Yang-Mills(-Higgs) on R4/Λ Nahm Equations on (R4)∗/Λ∗
Nahm Transform

2



1 The Mathematics of Gauge Theory

We give a detailed introduction of the material introduced in the first two chapters of [9]. Begin with
four-dimensional Euclidean space R4 as our base manifold with a principle G-bundle π : PG → R4

with G = SU(n). First, we make some elementary observations and definitions to guide us in
understanding gauge theory.

Observation 1.1. R4 is contractible. Consequently, any G-bundle has a global trivialization2. This
means that we can pick a global section sid : R4 → P (R4, G) such that sid(x) = 1G for each x.

Definition 1.2 (Gauge Group). We define the group of gauge transformations G to be the
space of global PG sections, with identity given by sid and multiplication given by AdG-action
fiberwise. The group G is called the gauge group (note the distinction between terminology for
these two groups).

Definition 1.3 (Aut(E) and End(E) bundles). For a given bundle E, we write Aut(E) and
End(E) to be the space of all bundle maps on E acting as fiberwise automorphisms and endomor-
phisms respectively.

Definition 1.4 (Associated Vector Bundle). A vector bundle E → R4 is called an associated
bundle to the bundle PG if there is a (basepoint preserving) bundle map ρ : PG → Aut(E) such
that ρ is continuous on PG. Here ρ is a representation of G.

Observation 1.5. ρ induces a pushforward ρ∗ : TeG → End(E).

Definition 1.6 (Connection 1-form). Letting g = Lie G be the Lie algebra of G, define a con-
nection 1-form to be Lie algebra-valued 1-form A ∈ Ω1(R4, g) acting on E by (ρ)∗.

Observation 1.7. Given an A ∈ Ω1(R4, g), for each representation ρ of g there is an associated
vector bundle Eρ. In particular, since g is itself a representation of the adg action, A acts on itself
(and more generally any g-valued form) by adg. It also transforms fiberwise under the AdG action
of the gauge group G as A→ Adg A+ g dg.

In physics, each different representation of g corresponds to a different class of particle. For
example in QCD the quarks transform in the fundamental representation of SU(3) while the force-
carrying gluon transforms in the adjoint representation.

Definition 1.8 (Exterior Covariant Derivative). The exterior covariant derivative or con-
nection DA associated to a connection 1-form A is written as

DA = d+ A. (1)

This operator allows one to differentiate a section s ∈ Γ(R4, E) along a direction v ∈ Γ(R4, T∗M)
by

ds(v) + ρ(A(v))(s). (2)

Definition 1.9 (Curvature of a Connection). The curvature 2-form F ∈ Ω2(R4, g) is defined by

F := DAA. (3)

By the Bianchi identity, DAF = 0.

2The fastest way to see that is that there is only one homotopy class of map R4 → BG
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Classical Yang-Mills theory on Euclidean space comes from considering an action functional of
the 1-form A on a bundle E as:

SE[A] :=
1

8π

∫
Tr [F ∧ ?F ] , (4)

where the trace is taken over the Lie algebra.
In Einstein’s convention, the action’s Lagrangian density is written as F a

µνF
µν
a , with µ, ν spatial

indices and a indexing the Lie algebra. Hamilton’s principle δS = 0 applied to this action gives
the corresponding source-free Yang-Mills Equations of Motion:

DAF = 0, DA ? F = 0. (5)

The explicit value of the action, however, may depend on the bundle of choice E. For example,
the instanton number, n, for instantons on R4, depends on the bundle itself. Throughout this
paper, when there is no ambiguity, E will refer to the bundle associated with the fundamental
representation (rank 2 for su(2)).

2 Monopoles on R3

We give here an exposition to magnetic monopoles, following the book of Atiyah and Hitchin [9].

2.1 From the Reduction of the ASD Equations

Taking the source-free Yang-Mills equations on R4, consider solutions that are translation invariant
under one coordinate, say x4. There are two ways forward: either by immediately considering the
ASD connections together with translation invariance or by building up the action and seeing how
the 3D analogue of the ASD connections emerges.

Observation 2.1 (ASD Connection). The ASD conditions for instantons on R4 can be explicitly
written as

F14 = −F32, F24 = −F13, F34 = −F21 (6)

For F translation invariant w.r.t. x4, we get

∂2A3 − ∂3A2 + [A2, A3] = ∂1A4 + [A1, A4] (7)

and the two other permutations. Taking A4 = φ gives that all three of these equations can be
written as

? F = DAφ. (8)

These are the Bogomolny equations. Any solution to this gives us a translation-invariant in-
stanton in R4. Note that these do not satisfy the decay conditions necessary for the instantons of
the ADHM construction.

2.2 From the Yang-Mills-Higgs Action on R3

To derive an effective action for the R3 field theory from translation invariance in R4 we first write:

A4D = A1 dx
1 + A2 dx

2 + A3 dx
3 + φdx4.
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Under the translation assumption, the spatial symmetry group of 4D Euclidean transformations
ISO(4) = R4 o SO(4) reduces down to the 3D group ISO(3) = R3 o SO(3). With this reduced
symmetry, the x4 component of A (namely φ) remains invariant under SO(3) transformations and
does not mix with the other three components. Thus, we have a reduction of A from lying in
Ω1(R4), as a fundamental representation of SO(4,R) fiberwise to lying in an inhomogeneous direct
sum Ω1(R3)⊕ Ω0(R3) of the fundamental SO(3,R) representation of SO(3) with the trivial one.

Note that both A and φ are still valued in g and transform in the adjoint representation. The
covariant derivative becomes D3D = d3D +A, since φ dx4 = 0 on any vector in R3. Now note that
the 4D curvature form becomes

D3D(A3D + φ) = F3D +D3Dφ. (9)

From now on we write F for F3D and DA for D3D. The associated action is then

S =
1

8π

∫
Tr [F ∧ ?F + (DAφ) ∧ ?(DAφ)] =

1

8π

∫
[(F, F ) + (DAφ,DAφ)] . (10)

where (Ω,Ω) := Tr[Ω ∧ ?Ω] denotes the inner product on p-forms induced by the metric on R3.
From now on, we restrict to the case g = su(2), and many of the more general results for su(n)
follow analogously.

Letting BR be ball of radius R centered at the origin in R3, we recover the action as the limit
of the integral:

lim
R→∞

1

8π

∫
BR

[(F − ?DAφ, F − ?DAφ) + 2 (?DAφ, F )]

Before tackling this last term, make the following observations:

Observation 2.2. For the above action to be well-defined, we require |F (~x)| = O(|x|−2) and
|Dφ(~x)| = O(|x|−2). This implies that the killing norm of φ, |φ|, tends to a constant value as
|x| → ∞.

Observation 2.3. If (A(~x), φ(~x)) is solution to the equations of motion, then (cA(~x/c), cφ(~x/c))
is also a solution.

For this reason, without loss of generality we may assume |φ(~x)| → 1 as |x| → ∞. For R large,
this makes φ|SR

: S2
R → S2 map from the sphere of radius R in R3 to the unit sphere S2 in su(2).

Let’s make one more observation before tackling the second term

d(φ, ?F ) = dTr[φF ]

= Tr[dφ ∧ F − φ dF ]

= Tr[DAφ ∧ F − φA ∧ F + φA ∧ F ]
= (DAφ, ?F )

= (?DAφ, F )

(11)

This implies that the second term can be written as a boundary term:∫
BR

(DAφ, F ) =

∫
S2
R

Tr[Fφ]

Note φ acting on a bundle E transforming in the fundamental representation of su(2) has two
eigenspaces of opposite imaginary eigenvalues, and by assumption that |φ| → 1, these eigenvalues
cannot both be zero. Thus, they cannot cross and this gives us two well-defined line bundles L+, L−
over S2

R corresponding to the positive and the negative eigenvalues.
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Proposition 2.4. E = L+ ⊕ L− has vanishing first Chern class c1(E) = 0.

Proof. This follows from the fact that su(2) is traceless

Corollary 2.5. The first Chern class of L+ is c1(L+) = +k and L− is c1(L−) = −k for an integer
k 3.

Proof. After picking an orientation so that the first Chern class of L+ is positive, the corollary
immediately follows upon observing that the Chern classes of complex line bundles over the sphere
are always integral, and the first Chern class of a direct sum is the sum of the individual first Chern
classes.

Proposition 2.6. limR→∞
∫
S2
R
(F, φ) = ±4πk.

Proof. By definition, the first Chern class of a vector bundle E is i
2π

∫
SR Tr(Ω) for Ω the curvature

two-form associated to E. Now note that on the eigenbundles of φ, we have that since |φ| → 1, it
acts as ±i (σ3 up to gauge) so that we must have (from before)

lim
R→∞

i

∫
S2
R

Tr(FL+)− i

∫
S2
R

Tr(FL+) = ±(2πkc1(L+) + 2πkc1(L−)) = ±4πk. (12)

As we take R → ∞ , this proposition gives us an action of

S =
1

8π

∫
BR

||F − ?DAφ||2 ± k. (13)

In this case, the absolute minimum is achieved when (A, φ) satisfy the following:

Proposition 2.7 (Bogomolny Equations). The monopole solutions for Yang-Mills theory on
R3 satisfy

? F (~x) = DAφ(~x) (14)

subject to the constraints (after rescaling of axes and fields) that:

1. |φ(~x)| → 1− k
2r

as |x| = r → ∞,

2. ∂|φ(~x)|/∂Ω = O(r−2), where Ω denotes any angular variable in polar coordinates,

3. |DAφ(~x)| = O(r−2).

The norm |φ| is the standard killing norm on g = su(2). These equations can also describe su(n)
monopoles, with adapted decay conditions.

Note under φ → −φ we get that the Bogomolny equations with k ≤ 0 become the anti-
Bogomolny equations and F = − ? DAφ and k ≥ 0. Further, spatial inversion together with
A → −A can flip these to the Bogomolny equations with k ≥ 0. Therefore, it is enough look at
solutions to the Bogomolny equations for k ≥ 0.

3It should be noted that (besides the non-monopole case of k = 0), this makes the bundle E nontrivial. This
means that E cannot just be the restriction of a (necessarily trivial) vector bundle over R3. To understand this:
the non-triviality of E can be seen to come from singularities induced on the vector bundle by the insertion of
monopole. In the k = 1 BPS case, this corresponds to E being a nontrivial bundle on R3\{0}
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Definition 2.8 (Magnetic Charge). The positive integer k is called the monopole number or
magnetic charge of the monopole solution.

Though our analysis has been for su(2), the u(1) case has the same equations characterizing a
monopole solution.

Observation 2.9. Note when g = u(1), and using the notation Bk = εijkFij the Bogomolny
equation becomes B = ∇φ, giving the first known magnetic monopole, the Dirac Monopole:

φ =
k

2r
.

Note. We aim to study the solutions of the Bogomolny equations modulo the action of the gauge
group G. However, not all gauge transformations preserve the decay conditions on DAφ and
|∂φ/∂Ω|. Consequently, we study the Bogomolny equations modulo the restricted gauge group
G̃ of transformations that tend to a constant element g as |x| → ∞.

3 Hitchin’s Scattering Equation, Donaldson’s Rational

Map, and the Spectral Curve

3.1 The moduli spaces Nk and Mk

We make the following notational definition

Definition 3.1. Let Nk be the space of gauge-equivalent su(2) monopoles of magnetic charge k.

This is our main object of study in what follows.
This section involves studying the solutions of “scattering-type” equations along directed lines

in R3. Consequently, the covariant derivative operator when restricted to a line, say along a line
parallel to the x1 axis, becomes:

DA → d

dx1
+ A1 (15)

In this case, we can make a gauge transformation

A→ gAg−1 + g−1dg

so as to make A1 = 0. This simplifies the covariant derivative along lines parallel to the x1 axis to
become just DA → d

dx1
.

A copy of U(1) still remains to act on A2 and A3. Thus, as x1 → ∞, because the decay
conditions on φ, we have that any gauge transformation tends to a constant element in this U(1)
subgroup. In this context, define:

Definition 3.2 (Framing). Define a framed gauge transformation [7, 10] to be one that tends
to the identity as x1 → ∞.

If we only identify solutions modulo framed gauge, then the asymptotic U(1) element as x1 →
∞ will differentiate between solutions that are otherwise equivalent modulo the full gauge group.
We thus make a definition
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Definition 3.3. Define Mk to the the space of solutions to the Bogomolny equations modulo
framed gauge. This is fibered over Nk with fiber S1

S1 ↪→Mk � Nk

Proof. We have seen that upon choosing A1 = 0, gauge transformations can still have an asymp-
totic value in a U(1) ∼= S1 subgroup. Thus, quotienting out by only framed gauge transformations
to get Mk leaves a piece of S1 information that Nk does not have. We will call this S1 element the
phase of a given monopole solution.

Note. Mk depends on a choice of oriented x1-axis in R3. A more coordinate-free way of defining this
extension Mk of Nk is given in [9]. It relies on a simple observation from the previous section that
asymptotically the restriction of E over S2

R is a direct sum of k-twisted bundles: Ek = L−k ⊕ Lk.
The automorphism group in SU(2) fixing this direct sum is exactly the U(1) diagonal action:(

eiθ 0
0 e−iθ

)
Thus, up to this U(1) automorphism determining phase, every k-monopole solution is asymptot-
ically equivalent to a fixed Ek. Informally: restricting the gauge transformation group so as to
retain this automorphism information gives us Mk = Nk × S1.

3.2 Hitchin’s Scattering Transform

In [1] Hitchin made use of a scattering method to show the following equivalence:

Theorem 3.4 (Hitchin). Given a solution (A, φ) to the Bogomolny equations satisfying the criteria
of 2.7, then let ` be a directed line in R3 pointing along a direction n̂ with distance parameterized
by t and consider the following scattering equation along `

(Dn̂ − iφ)ψ = 0. (16)

Here Dn̂ is a restriction of the covariant derivative DA to act along `, φ is the scalar field restricted
to `, and ψ is a section of the restriction of the vector bundle E associated to the fundamental
representation C2 to the line `.

The solutions to this equation form a complex two-dimensional space Ẽ` of sections. If A, φ
satisfy the Bogomolny equations, then Ẽ` is a holomorphic vector bundle over the space of directed
lines in R3.

There are several propositions that need to be developed before this theorem can be made
sense of. Firstly,

Proposition 3.5. The space of directed lines in R3 forms a complex variety isomorphic to the
tangent bundle to the Riemann sphere TCP1 with a real structure σ.

Proof. Once a normal direction n̂ is chosen, a directed line ` in R3 is uniquely determined by a
vector ~v ⊥ n̂. Thus our space is

{(n, v) : |n| = 1, u · v = 0} (17)

8



Clearly n̂ sits on a sphere S2 and (n̂, v) form TS2. It is sufficient to find a complex structure to
make this into the complex variety TCP1. We will form a complex structure on CP1 and then
this lifts to one on the tangent bundle. The complex structure J acting on a point (n, v) is given
by taking J(v) = n̂ × v. This corresponds exactly to the complex structure on the holomorphic
tangent bundle of the Riemann sphere.

The real structure σ comes from reversing the orientation of a line (n̂, v) → (−n̂, v). It is easy
to see σ2 = 0, and since it reverses orientation in R3 is takes J → −J .

Example 3.6. To make this picture clearer for the reader, let’s note that given a point (x1, x2, x3),
each direction n̂ has a unique line (n̂, v) passing through this point. Thus, a point ~x ∈ R3 determines
a section s : CP1 → TCP1. Explicitly, picking a local coordinate ζ on CP1 we get:

s(ζ) = ((x1 + ix2)− 2x3ζ − (x1 − ix2)ζ
2)
d

dζ
. (18)

The fact that the coefficient is a degree 2 polynomial in ζ is a consequence of the tangent bundle
being a bundle of degree 2 over CP1. Note further that this corresponds to describing R3 as the
space of real holomorphic vector fields on the Riemann sphere, namely so(3,R).

Next, let us try to study this scattering equation. It will be useful to restrict, without loss of
generality, to lines parallel to the x1 axis.

Proposition 3.7. The solutions to the scattering equation on a line form a two dimensional space.

Proof. In the gauge A1 = 0 developed before, this is an easy consequence of the fact that E is
rank two and so upon decomposing E into eigenspaces of φ, L+ ⊕ L−, the scattering equation
decouples into two linear differential equations:[

d

dx
− iλj(x1)

]
sj = 0, j = 1, 2. (19)

Because these equations are both linear and first-order, they each have a one-dimensional space
of solutions.

We can now understand the vector bundle that Hitchin constructed on TCP1.

Observation 3.8. Let Ẽ → TCP1 denote the two-dimensional space of solutions to the scattering
equation associated to a given line in R3. This forms a vector bundle.

We are now ready to prove Hitchin’s theorem.

Proposition 3.9 (Construction of a Holomorphic Vector Bundle). If (A, φ) satisfy the Bogomolny
equations, then Ẽ is holomorphic.

Proof. Hitchin appeals to a theorem of Nirenberg [11]: that it is sufficient to construct an operator

∂̄ : Γ(TCP1, Ẽ) → Γ(TCP1,Ω(0,1)(Ẽ)).

The existence of ∂̄ on Ẽ would give Ẽ a holomorphic structure for which ∂̄ plays the role of the
anti-holomorphic differential. Let s be a section of Ẽ for a given directed line ` in R3. Let t be
the coordinate alone this line an x, y be orthogonal coordinates in the plane perpendicular to `.
In this case, define:

∂̄s = [Dx + iDy] s(dx− idy). (20)

9



Where Dx, Dy are shorthand for the x and y components of the covariant derivative DA.
It is easy to show that this operator satisfies the Leibniz rule together with (∂̄)2 = 0, but we

must show that it is well-defined as an operator from Γ(TCP1, Ẽ) → Γ(TCP1,Ω(0,1)(Ẽ)). Namely,
we must show that it fixes Ẽ, meaning that:(

d

dt
− iφ

)
(Dx + iDy) = 0. (21)

But this can be written as the requirement that the following commutator vanishes:

0 =

[
d

dt
− iφ,Dx + iDy

]
= F12 + iF13 −Dyφ+ iDxφ

⇒ F12 = Dyφ F31 = Dxφ.

(22)

These are exactly the Bogomolny equations, as desired. We have thus shown that Hitchin’s con-
struction works.

3.3 The Spectral Curve

Given the above discussion, it is worth trying to understand what the solutions of this scattering
equation mean. We know from before that the null space of the scattering operator consists of two
linearly independent solutions, s0 and s1. Let us look at their asymptotics. Again, let ` be a line
parallel to the x1 axis with A1 = 0. Then

Proposition 3.10. As t→ ∞, the two solutions to Hitchin’s scattering equation are combinations
of the following two solutions:

s0(t) = tk/2e−t e0, s1(t) = t−k/2et e1 (23)

where e0 and e1 are constant vectors in E in the asymptotic gauge.

Proof. Since A1 = 0, the scattering equation becomes

d

dt
− iφ = 0. (24)

Using asymptotics on φ from the prior section, we get

d

dt
− i

(
1− k

2t

)(
i 0
0 −i

)
+O(1/t2) = 0. (25)

This yields two differential equations:

d

dt
+

(
1− k

2t

)
+O(1/t2) = 0,

d

dt
−
(
1− k

2t

)
+O(1/t2) = 0, (26)

which in turn yield two solutions as t→ ∞:

s0(t) → tk/2e−t e0, s1(t) → t−k/2et e1. (27)
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Note that (by t-reversal symmetry) we must have the same type of solutions as t → −∞.
Namely, there is a basis where one solution blows up as t → −∞ and the other decays to zero.
The solution that decays to zero, s′, must necessarily be some linear combination of the t → ∞
solutions s0 and s1. We thus have:

s′ = as0 + bs1. (28)

In the special case that b = 0, we get that s′ decays not only as t → −∞ but also as t → ∞.
Physically, this is called a bound state.

Definition 3.11 (Bound state). A bound state ψ(~x) is a state of a physical system that decays
“sufficiently quickly” (i.e. as e−|x|) as |x| → ∞). It captures the notion of a localized particle.

Since the linear combination for s′ is a relationship between sections of a holomorphic line
bundle, the ratio a/b is a well-defined meromorphic function on TCP1. Fixing n̂, the poles of this
function generically give k points on Tn̂CP1. Letting n̂ vary gives Hitchin’s spectral curve Γ on
TCP1. Note this is a k-fold cover of CP1, and an application of the Riemann-Hurwitz formula
would yield that Γ in fact has genus k − 1. We will illustrate more on why this curve deserves its
name using the Nahm transform in section 4.

Hitchin gives the following theorem, which we will state without proof:

Theorem 3.12 (Hitchin). If two monopole solutions (A, φ), (A′, φ′) have spectral curves Γ′,Γ,
then (A, φ) is a gauge transform of (A′, φ′).

Note that here there is no assumption on framing. The spectral curve itself does not carry
information about the phase of the monopole solution. On the other hand, the section s′ associated
to a given line for a monopole solution gives rise to a distinguished line bundle L over Γ, alongside
the standard restriction of the vector bundle Ẽ to Γ.

Note that Γ is holomorphic and real in the sense that it is preserved by the real structure σ
on TCP1.

The proof that a spectral curve satisfying the conditions imposed on Γ will give rise to a
monopole solution is done by going through the Nahm equations. As mentioned before, Hitchin [7]
showed using ideas from sheaf cohomology that a spectral curve on TCP1 naturally gives rise to a
set of Nahm data from which the Nahm equations can be constructed. In this way, the construction
of monopoles goes in the direction of Figure 1.

3.4 The Rational Map

Let x1 = t and z = x2 + ix3. Let ` be a line parallel to the x1 axis. Note it is determined by its
intersection z with the x2, x3 plane. a and b are as before: the linear combination of s′ = as0+ bs1,
the solution decaying as t→ −∞.

It is a powerful result of Donaldson [2] that tells us: for a fixed direction x1 we not only obtain
a meromorphic function of the lines ` parallel to x1, namely S(z) = a(z)/b(z), but that in fact any
meromorphic function on CP1 with denominator degree k has an interpretation as a k-monopole
solution. This rational function depends on the point of Mk specifying the monopole. In this sense
it is almost gauge invariant, except for the S1 phase associated to it. The poles of this rational
function correspond to when the solution has s′ = s0 from before, namely a bound state.

We state Donaldson’s result:
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Theorem 3.13 (Donaldson). For any m ∈Mk, the scattering function Sm is a rational function
of degree k with Sm(∞) = 0. Denote this space of rational functions by Rk. The identification of
m→ Sm gives a scattering map diffeomorphism Mk → Rk.

Example 3.14. For k = 1 we have Rk takes functions of the form α
z−β

, which turns out to

correspond to a monopole at (log 1/
√

|α|,Re(β), Im(β)). The argument of α describes the U(1)
phase at t→ ∞. This means M1 has complex structure C× C×.

Example 3.15. For higher k, in the generic case a rational function in Rk will split as a sum of
simple poles ∑

i

αi

z − βi
.

This has the interpretation of monopoles having centers at positions (log 1/
√

|αi|,Re(βi), Im(βi))
and phases described by the arguments of the αi.

4 The Nahm Equations

4.1 Motivation

By adopting the monad construction of ADHM, Nahm succeeded in adapting their formalism to
solving the 3D Bogomolny equation. The idea of Nahm (and indeed, the idea behind the Nahm
transform more broadly) was to recognize monopoles on R3 as solutions to the anti-self-duality
equations in R4 that were invariant under translation along one direction, and then appropriately
modify ADHM to account for the different decay conditions and symmetries of the configuration.

In what follows, a quaternionic vector space of dimension k is taken to mean k copies of
C2, C2k, where each copy has quaternionic structure.

Review. The ADHM construction for su(2) starts with W a real vector space of dimension k and
V a quaternionic vector space of dimension k + 1 with inner product respecting the quaternionic
structure. Then, for a given x ∈ R4 it forms the operator:

∆(x) : W → V. (29)

The operator ∆(x) is written as Cx+D where C,D are constant matrices and x ∈ H is viewed a
quaternionic variable once a correspondence is made R4 ∼= H.

If ∆ is of maximal rank, then the adjoint ∆∗(x) : V → W has a one-dimensional quaternionic
subspace Ex that, as x varies, can be described as a bundle over H ∼= R4. The orthogonal projection
to Ex (viewed as a horizontal subspace) in V defines the (Ehresman) connection on the vector
bundle E → R4. [7]

Here, we will use the zero-indexed (x0, x1, x2, x3) to label the coordinates so that the imaginary
quaternionic structure of the latter three becomes more clear. Nahm’s approach [3] was to seek
vector spaces W,V fulfilling the same function, and look for the following conditions:

1. ∆(x)∗∆(x) is real and invertible (as before).

2. ker∆(x)∗∆(x) has quaternionic dimension 1 (as before).

3. ∆(x+ x0) = U(x0)
−1∆(x)U(x0).
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This last point is equivalent to the translation invariance of the connection in x0, up to gauge
transformation.

Because of this new condition, unlike the case of ADHM, V and W turn out to be infinite
dimensional. Consequently, ∆,∆∗ become differential (Dirac) operators.

4.2 Construction

To construct V , first consider the space of all complex-valued L2 integrable functions on the
interval (0, 2). Denote this space by H0 (this notation coming from the fact that this is the zeroth
Sobolev space). This space has a real structure coming not only from f(s) → f̄(s) but also from
f(s) → f̄(2− s). Define V = H0 ⊗ Ck ⊗H, where Ck is taken to have a real structure.

Similarly, we defineW by considering the space of functions whose derivatives are L2 integrable.
This will be denoted by H1 (again with motivation deriving from a corresponding Sobolev space
concept). Define

W = {H1 ⊗ Ck : f(0) = f(1) = 0}.

Now define ∆ : W → V by

∆(x)f = i
df

ds
+ x0f +

3∑
i=1

(xiei + iTi(s)ei)f, (30)

where ei denote multiplication by the quaternions i, j, k respectively and Ti(s) are k× k matrices.
It is clear that this operator is the form Cx+D with C = 1 and D = i d

ds
+ i

∑
Tjej.

Using the language of [7] we make the following proposition

Proposition 4.1. The following hold:

1. The requirement that ∆ is quaternionic implies Ti(s) = Ti(2− s)∗.

2. The requirement that ∆ is real implies Ti(s) are anti-hermitian and also that [Ti, Tj] = εijk
dTk

dt
.

3. The requirement that ∆ is invariant under x0 translation is automatically satisfied

4. The requirement that ∆∗ has kernel of quaternionic dimension 1 comes from requiring that
the residues of Ti at s = 0, 2 form a representation of SU(2)

Proof. The first two are relatively straightforward to see. The new condition follows immediately
from

eix0(s−1)[∆(x)]e−ix0(s−1)f = eix0(s−1)

[
i
d

ds
+ . . .

]
(e−ix0(s−1)f)

= ∆(x)f + x0f

= ∆(x+ x0)f.

(31)

The last item states that since the residues of a k×k matrix valued functions are themselves k×k
matrices, that in fact the commutation relations of these residue matrices at s = 0 and 2 form
k-dimensional representations of SU(2). This requires a bit of work, and can be found in [7].

We thus have the following data:
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T1(s), T2(s), T3(s) k × k matrix-valued functions for s ∈ (0, 2) satisfying

dTi
ds

+ εijk[Tj, Tk] = 0. (32)

together with the requirements

1. Ti(s)
∗ = −Ti(s)

2. Ti(2− s) = −Ti(s)
3. Ti has simple poles at 0 and 2 and is otherwise analytic

4. At each pole, the residues T1, T2, T3 define an irreducible representation of su(2).

These are Nahm’s equations.
For a given solution of Nahm’s equations, the associated Dirac operator ∆∗(x), depending on

a chosen ~x, can be shown to again yield a 1-dimensional quaternionic (2-dimensional complex)
kernel Ex. Here, though, it does not specify a connection on R4 but instead gives rise to A and φ
through the following way construction:

Construction 4.2 (3D Monopole from Nahm’s Equations). Pick an orthonormal basis of Ex =
ker∆∗(x) ∼= C2. Call this v1, v2. We view Ex as a fiber at x corresponding to a C2 bundle, and
construct φ and A by their actions on a given va at x.

φ(~x)(va) = i
v1

||v1||L2

∫ 2

0

(v1, (1− s)va)ds+ i
v2

||v2||L2

∫ 2

0

(v2, (1− s)va)ds,

A(~x)(va) =
v1

||v1||L2

∫ 2

0

(v1, ∂iva)ds+
v2

||v2||L2

∫ 2

0

(v2, ∂iva)ds.

(33)

4.3 The Spectral Curve in Nahm’s Equations

For any complex number ζ we can make a definition:

A(ζ) = (T1 + iT2) + 2T3ζ − (T1 − iT2)ζ
2,

A+ = iT3 − (iT1 + T2)ζ.
(34)

Nahm’s equations can then be recast as:

dA

ds
= [A+, A]. (35)

This is the Lax Form of Nahm’s equations. This can be solved by considering the curve S in C2

with coordinates (η, ζ) defined by
det (η − A(ζ)) .

Proposition 4.3. The above equation is independent of s.

Proof. Let v be an eigenvector of A and let it evolve as dv
ds

= A+v. Then

d(Av)

ds
= [A+, A]v + AA+v = A+Av = λA+v, (36)

so this gives
d

ds
(A− λv) = 0. (37)

Since A − λv = 0 at s = 0, it is always zero. Thus, this curve of eigenvalues is independent of
s.
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It is in fact a remarkable result that:

Proposition 4.4. The curve S constructed above is the same as the spectral curve Γ constructed
previously.

Hitchin showed this by associating to a given spectral curve Γ a set of Nahm data in [7].

5 The Nahm Transform and Periodic Monopoles

The Nahm transform is a nonlinear generalization of the Fourier transform, related to the Fourier-
Mukai transform. It allows for the construction of instantons on R4/Λ. Some examples are below:

1. Λ = 0: ADHM Construction of Instantons on R4,

2. Λ = R: The monopole construction that this paper has described,

3. Λ = R× Z: Periodic monopoles on R3 (calorons, c.f. [12]),

4. Λ = (R× Z)2: Hitchin system on a torus.
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